Utilice un compás para trazar un círculo . Mantener la brújula en la misma anchura exacta , elegir un punto en la circunferencia y trazar un arco desde un lado del círculo a la otra . Asegúrese de que la parte superior del arco pasa por la punta de la aguja del centro del círculo original . Tome la aguja de una brújula a uno de los puntos de intersección del arco y el círculo original; trazar otro arco , de nuevo asegurándose de que la parte superior del arco pasa por el centro del círculo original . Repita este procedimiento hasta que haya pasado por todo el círculo y cada arco ha cruzado para crear el diseño de una flor de seis pétalos .
Ayuda niños coloreen este diseño , averiguar el diámetro del círculo mediante la medición de las hojas , y hacer hexágonos y triángulos descartando líneas entre cada segundo punta pétalo. Hacer una flor de 12 pétalos por encontrar el punto medio entre dos puntas de los pétalos y trazando arcos alrededor del círculo a partir de ese punto medio .
De Fibonacci Nautilus Shell
Dibujar una Nautilus shell puede ayudar a ilustrar la geometría de la serie de Fibonacci y los rectángulos de Fibonacci resultantes . Para obtener la curva apropiada de la cáscara del nautilus , comience con un cuadrado de 1 cm . Dibuja otro cuadrado de 1 cm que comparte uno de los lados del cuadrado original . Ahora dibuja un cuadrado de 2 cm en la parte superior que utiliza los lados de ambos cuadrados de 1 cm . Dibuja un cuadrado de 3 cm que utiliza tanto los cuadrados de 2 cm y de 1 cm .
El patrón continúa en la serie de Fibonacci , por lo que el siguiente cuadrado será de 5 cm , seguido de 8 cm y 13 cm . Para proyectos de arte que es mejor dejar a los 13 cm , ya que esto sólo cabe en una página A4 (que por cierto es en sí un rectángulo de Fibonacci con lados 13 y 21 cm de largo) . A partir de la primera plaza , dibujar una espiral que va en diagonal a través de cada plaza en una rotación . Esto crea la espiral base de la cáscara del nautilus . Los estudiantes pueden entonces de forma libre esbozar el resto de la concha en la página. Anime a los niños a encontrar rectángulos de Fibonacci en otros objetos todos los días , al igual que las tarjetas bancarias .
Pintura Giza
Haga pinturas o fotografías de las pirámides de Giza para ayudar ilustrar diferentes aspectos geométricos del triángulo , como ángulos y área. Averiguar el área de una pirámide es mucho más divertido para los niños que simplemente averiguar el área de un triángulo ordinaria , ya que involucra su imaginación . Esta es también una buena oportunidad para que los maestros dicen a los estudiantes acerca de cómo ayudó a la geometría del faraón y sus arquitectos construyen las pirámides y cómo se ayuda a los arquitectos modernos de hoy .